Insulin-degrading Enzyme in Brain Microvessels
نویسندگان
چکیده
منابع مشابه
Insulin-degrading enzyme in brain microvessels: proteolysis of amyloid {beta} vasculotropic variants and reduced activity in cerebral amyloid angiopathy.
The accumulation of amyloid beta (Abeta) in the walls of small vessels in the cerebral cortex is associated with diseases characterized by dementia or stroke. These include Alzheimer's disease, Down syndrome, and sporadic and hereditary cerebral amyloid angiopathies (CAAs) related to mutations within the Abeta sequence. A higher tendency of Abeta to aggregate, a defective clearance to the syste...
متن کاملInsulin-degrading enzyme: embarking on amyloid destruction.
Several human disorders are caused by or associated with the deposition of protein aggregates known as amyloid fibrils. Despite the lack of sequence homology among amyloidogenic proteins, all amyloid fibrils share a common morphology, are insoluble under physiological conditions and are resistant to proteolytic degradation. Because amyloidogenic proteins are being produced continuously, eukaryo...
متن کاملMetal ions affect insulin-degrading enzyme activity.
Insulin degradation is a finely tuned process that plays a major role in controlling insulin action and most evidence supports IDE (insulin-degrading enzyme) as the primary degradative agent. However, the biomolecular mechanisms involved in the interaction between IDE and its substrates are often obscure, rendering the specific enzyme activity quite difficult to target. On the other hand, biome...
متن کاملRedox Regulation of Insulin Degradation by Insulin-Degrading Enzyme
Insulin-degrading enzyme (IDE) is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was stud...
متن کاملThe Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease
Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2004
ISSN: 0021-9258
DOI: 10.1074/jbc.m407283200